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Abstract—Cross-domain recommendation (CDR) has recently
emerged as an effective way to alleviate the cold-start and
sparsity issues faced by recommender systems, by transferring
information from an auxiliary domain to a target domain
to improve recommendations. Studying the similarity between
domains is a novel direction in CDR research, potentially opening
doors for further exploration. In this context, we introduce
a systematic approach to quantify similarity between a pair
of domains and explore how current CDR methods perform
with both similar and dissimilar domain combinations. We
achieve this by presenting two original similarity metrics. Our
extensive empirical evaluation on different domain combinations
demonstrates that the state-of-the-art CDR algorithms do not
perform significantly better when using source domains that are
more similar to the target domain, compared to those that are
less similar. Importantly, we find that no matter how similarity
is measured, it does not correlate with the recommendation
performance of the state-of-the-art algorithms.

Index Terms—Domain Similarity, Information Retrieval,
Cross-Domain Recommendation, Natural Language Processing

I. INTRODUCTION

In this current day and age, many e-commerce applications
rely on recommender systems to recommend items to their
customers [1]. The abundance of available information in
the digital world, which is growing at an exponential rate,
has made it challenging to recommend personalized items
to users efficiently [2], [3]. Most recommender systems
focus on making recommendations in a single domain (e.g.
recommending movies to users based on movie ratings).

Recently, cross-domain recommender systems have
emerged as an approach to improve the quality of
recommendations. These systems leverage information from a
source domain to provide more accurate recommendations in a
target domain [4]. Through information transfer, cross-domain
recommender systems can provide relevant recommendations
to new users, which helps mitigate the cold-start and sparsity
issues faced by single-domain recommender systems [1].

Given that cross-domain recommendation (CDR) is a new
field of research, a number of models have been proposed
and studied [5]. Previous studies have mainly focused on
transferring information between domains that are assumed
to be related (e.g. books and movies) [6]. However, there
is a lack of research examining the correlation between the
similarity of two domains and its impact on cross-domain

recommendation performance. Intuitively, the greater the
similarity between the source domain and target domain, the
better the recommendation performance from source to target.
For instance, using knowledge about movie preferences
should be a good basis for recommending TV shows, but
knowledge about movie preferences may be less useful for
recommending restaurants. But is that really the case? In this
paper we try to answer this question by first defining a set
of novel similarity metrics and then presenting results from
an extensive set of experiments with three state-of-the-art
approaches. Our empirical evaluation demonstrates that
the current state-of-the-art CDR models do not perform
significantly better with similar domain combinations, and
we leave for future work the question of how domain
similarity should be exploited in the design of a cross-domain
recommendation algorithm. We make our data and code
available at https://github.com/ajaykv1/Domain-Similarity-
CDR. To summarize, our contribution is as follows:

• We present a novel set of metrics that aim to capture
similarity between two distinct domains in the context of
cross-domain recommendation.

• We conduct a comprehensive empirical evaluation to
investigate the relationship between recommendation per-
formance and domain similarity using three different
CDR algorithms on 18 domain combinations.

• We analyze factors such as recommendation algorithm
and similarity between domains, which may influence the
recommendation performance.

II. RELATED WORK

Cross-domain recommendation has gained significant atten-
tion as a way to address the cold-start and sparsity challenges
faced by traditional single-domain recommender systems [7].
By leveraging transfer learning techniques, they aim to make
better recommendations in the target domain [8]. In recent
years, a number of methods have been proposed and shown
to improve recommendation quality in cross-domain settings,
but the domains selected in these studies lacked a formal
criteria [9], [10]. The lack of a systematic way to measure
similarity between domains for domain selection, makes it
difficult to select the ideal domains for the task of cross-
domain recommendation. As a result, we believe researchers
are assuming that two domains relate to each other based on
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human intuition, or are choosing domains based on the limited
data available.

Recently, new methods for CDR have been proposed, and
they have been labeled as the state-of-the art algorithms for
cross-domain recommendation [11], [12]. Hu et al. [13] pro-
posed a transfer learning approach for CDR, known as Collab-
orative Cross Networks for Cross-Domain Recommendation
(CoNet), that uses neural networks as the base model. They
selected Books and Movies to be the domains from the Ama-
zon dataset, solely based on the fact that they were the largest
domains (contained more products) compared to the others
in the dataset. The domains selected for the Mobile dataset
were the different genres of news, and this selection was
based on the assumption that they were related to each other
[13]. Man et al. [14] proposed an embedding and mapping
approach for cross-domain recommendation (EMCDR). They
used the Movielens-Netflix dataset and the Douban dataset
(which contains ratings users gave to books and movies) to
evaluate their approach. For the Movielens-Netflix dataset,
they picked Movielens as the source domain and Netflix as the
target domain. For the Douban dataset, they picked Movies as
the source and Books as the target domain [14]. Again, there
was no clear reason for the choice of domains.

Recently, a study was conducted by Sahebi et al. [6]
which explores domain pairs for cross-domain recommenda-
tion. They propose a method that uses Canonical Correlation
Analysis (CCA) to find promising source domains for a
target domain. To the best of our knowledge, we believe
that this is the only study that explores the compatibility
of domains, and provides a way to constructively choose a
related source domain that will improve recommendations for
a target domain. Based on the results for their method (CCA),
they concluded that the more overlapping users between the
source and target domain, the better the recommendation
results are in the target domain. Their study differs from ours
in that we develop the similarity metrics based on the item
metadata from each domain and investigate the relationship
between domain similarity and recommendation performance.
In addition, we maintain a 100% user overlap between all the
domain combinations to ensure that the results will not be
affected by other factors.

III. SIMILARITY METRICS

To the best of our knowledge, a systematic approach to
measuring similarity between domains has not been explored
in the field of cross-domain recommendation, making this
study one of the initial efforts in doing so. Addressing this
issue, we present two novel similarity metrics, which leverage
item information from both domains. Given that many datasets
for recommender systems associate items with one or more
tags, we argue that a domain can be effectively characterized
based on its items’ tag information. Tags can carry high-
level information about items, which can be useful despite
the absence of other forms of meta-data. Usually, they are
broad terms used as key words to describe items, and their
broad nature allows them to describe items across multiple

Fig. 1: This figure shows the process of extracting all the
individual tags, along with their frequencies, for each domain.

Fig. 2: Computing the domain embedding using tags and
frequencies within a domain (see Equation 1 for details).

different domains (see Figure 1). Hence, we argue that tags
are a strong text-based meta-data for computing similarity. The
first similarity metric we present represents each domain as
an individual embedding, and quantifies similarity between
domains by computing the cosine similarity between their
embeddings (see Section III-A). The second similarity metric
we present focuses on the item-level similarity across two
domains (see Section III-B).

A. Embedding-based Domain Similarity

We use proven NLP techniques to generate a detailed and
cohesive embedding for each domain, which we refer to as
a domain embedding. We leverage item tag information to
create the domain embedding, so to ensure the most accurate
representation, we generate embeddings for tags using pre-
trained GloVe embeddings [15]. Pre-trained GloVe embed-
dings [15] are vector representations for words, which were
generated by running the GloVe algorithm on a large corpus
of text data. The various dimensions of the vector represent
the underlying meanings of the word based on the context of
how it is used. Words with similar meanings will have similar
embeddings, while words with dissimilar meaning will have
dissimilar embeddings [16].

For this metric, we gather a list of tags, where every tag in
the list has been used to describe at least one item within the
domain. In addition, we retrieve their frequency to document



how many times each tag was used in the domain (see Figure
1). Tags with higher frequencies are important to characterize
the domain, since they are used to describe a significant
number of items. Essentially, the more often a tag is used,
the more likely it is to be used as an indicator to describe the
domain as a whole.

For each tag in the domain, we retrieve the correspond-
ing embedding from the GloVe pre-trained embeddings. The
GloVe pre-trained embeddings are available in different di-
mension sizes, which range between 50, 100, 200, and 300
dimensions [15]. We opted for the 300 dimensional embedding
to retain as much information as possible from each tag. Tags
with higher frequencies describe more items in the domain as
opposed to tags with less frequencies, so higher frequency tags
are given a higher weight since they carry more information.
By providing a higher weight, we are able to preserve the
importance of the tags and their value within the domain. Once
the embeddings are gathered for all the tags, we compute a
weighted average of all the tag embeddings by using their
corresponding frequencies. The result of the weighted average
is a single embedding, which is a detailed representation of
the tag information within the domain (see Figure 2). Let t1
represent the embedding for the first tag in the domain, and tn
represent the embedding for the nth tag in the domain. Let c1
represent the frequency for of the first tag, and cn represent
the frequency of the nth tag. The weighted average of the tag
embeddings is computed as follows:

temb =

∑n
i=1 ti ∗ ci∑n

i=1 ci
(1)

The tag embeddings are summed together, where each em-
bedding is multiplied by its corresponding frequency, and
the final embedding is divided by the sum of all the tag
frequencies (see Equation 1). The resulting embedding, temb,
contains a deep understanding of items within the domain, and
serves as a meaningful representation of a domain, because
the knowledge of tags and their importance were preserved
through the weighted average.

In this study, we use cosine similarity for the similarity com-
putation between two embeddings. Cosine similarity measures
based on orientation rather than magnitude, which makes it
a good choice when working with higher dimensional data
[17]. We measure the cosine similarity between two domain
embeddings to measure how similar two domains are. Let
semb represent the embedding for the source domain, and
let temb represent the embedding for the target domain. The
cosine similarity between the two domain embeddings can be
computed as follows:

simst =
semb · temb

∥semb∥ ∥temb∥
(2)

The resulting value simst represents the similarity between
the source (s) and target (t) domain (see Equation 2). We
presented a novel way to represent a domain as an embedding
in the context of cross-domain recommendation, and described
how to measure similarity between two domains.

Fig. 3: Computing the embedding for an item using its tags.

B. Inter-domain Item Similarity

Domains generally consists of a set of items, and each
item is represented by a set of tags. We represent each item
as an embedding, using the GloVe pre-trained embeddings
(see Section III-A), and find the item-level similarities across
domains in order to quantify similarity between two distinct
domains [15]. For every item, we collect its associated tags,
and retrieve their corresponding embeddings from the GloVe
pre-trained embeddings [15]. For this metric, we opted for the
300 dimensional embedding to retain as much information as
possible from each tag. Once the pre-trained embeddings are
gathered for all tags, we average them together to generate
a single item embedding (see Figure 3) . Let t1 represent
the embedding for the first tag, and let tn represent the
embedding for the nth tag used to describe the item I . The
item embedding is computed as follows:

Iemb =

∑n
i=1 ti
n

(3)

The resulting embedding, Iemb, is the representation of a
single item within a domain, and we generate item embeddings
for every item within a domain (using Equation 3). To compute
item-level similarity between two domains, we make use of
Simple Random Sampling (SRP). SRP is a sampling technique
used in statistics, that gives each member an equal chance
of being selected from a population sample. This allows
for the selected samples to be bias free, and provides for
higher generalization ability for the entire population. For this
metric, we consider all the items within each domain as the
population, and each item as an individual sample from the
total population. To compute item-level similarity between two
domains, we first randomly select a sample of 100 items from
each domain. Next, we create combinations of pairs using
the sampled items from both domains. Each combination is
composed of one item from the first domain and one item from
the second domain. We then calculate the cosine similarity
between the embeddings of the two items within each pair. In
order to represent the item-level similarity between the two
domains, we average the similarity values across all pairs.

By selecting 100 samples from each domain at random
(using SRP), we aim to reduce the potential bias in the
similarity computation, and generalize the domain using the
selected items. In addition, the computational efficiency is
improved by using a smaller, random sample size, rather than
considering every item in the domain. The item-level similarity
across domains not only leverages individual item information



but also provides an understanding of the relationship between
items in both domains, making it novel in the context of cross-
domain recommendation.

C. Construct Validity of Domain Similarity Computation

Given that our study is the first to introduce domain similar-
ity for CDR, we adopt techniques from Measurement Theory
to argue that our metrics show construct validity [18]. Fang
et al. introduced two main properties that need to be satisfied
in order to show that metrics have construct validity: (i) Face
Validity; (ii) Content Validity [18].

In order to show face validity of our metrics, we need
to confirm that the fundamental aspects of our approach
(e.g. model and data) are suitable for the task of computing
domain similarity. For our metrics, we use GloVe pre-trained
embeddings to retrieve word embeddings for tags. Since we
are dealing with tag information, we do not need to account
for context, such as sentences, so the choice of GloVe is
reasonable in that it captures both the semantic and syntactic
meaning of individual words without context of other words.
For the task of computing similarity between domains, we
leverage tag information, which overlaps between various
domains, making it a suitable choice of data. If we were to
train on other sources of data (e.g. descriptions, images, etc.)
there is no guarantee that the information would be consistent
across domains, which would make similarity computation
perform poorly. Therefore, we are able to show that our
metrics satisfy face validity based on the model and data used
to create embeddings.

The content validity of our domain similarity metrics is
well-established through a theoretically grounded approach. In
the first metric, domain embeddings are created by averaging
tag embeddings from GloVe, a method widely recognized for
capturing semantic relationships in text data. This approach
ensures that each domain’s embedding is a comprehensive
representation of its key characteristics, as tags frequently used
within a domain contribute more significantly to its overall
representation. The second metric shows content validity by
computing item-level similarities between domains. This is
achieved by averaging GloVe embeddings for tags associated
with each item, followed by a random sampling technique to
ensure unbiased representation and computational efficiency.
The use of cosine similarity in both metrics, a standard method
for comparing high-dimensional semantic spaces, further so-
lidifies their content validity. These metrics, therefore, offer a
robust and theoretically sound framework for assessing domain
similarities in cross-domain recommendation, reflecting a deep
understanding of domain and item-level characteristics, which
shows content-validity.

Fang et al. [18] mentions two other properties to validate
construct validity, which includes Convergent and discrimi-
nant validity and Predictive validity, where they deal with
comparing the similarity metrics in this paper with other
established metrics. However, there are no established methods
for computing domain similarity, making the additional tests
for construct validity not applicable to this situation. Given

that our study is the first to introduce domain similarity, we
were able to show construct validity based on properties from
measurement theory that were applicable in this study [18].

D. Limitations of Computing Similarity

There are some difficulties associated with finding similarity
between domains for CDR. Since there is no ground truth
about similarity between two domains, we don’t know whether
the similarity values generated by our metrics make sense
in an absolute sense. We introduced two novel similarity
measures for domain combinations, and the fact that there
does not exist another similarity measure for CDR shows
that we may have to rely on human intuition to validate the
similarity values. However, in Section III-C, we were able
to prove that our similarity metrics had construct validity.
In addition, in Section IV-B, we show how the similarity
values generated by our metrics contain validity, and how
the results make sense based on one’s intuition. Given the
difficulties and limitations of computing similarity between
domains for cross-domain recommendation, the metrics we
present in this paper pave way for new research in computing
domain similarity. Being able to quantify similarity between
two domains systematically, in the context of cross-domain
recommendation, is important for the future of CDR.

IV. EXPERIMENTS AND RESULTS

We conduct thorough experiments to answer the following
research questions: RQ1: How effective is the similarity com-
putation between domains? RQ2: How does domain similarity
correlate with the recommendation performance for the state-
of-the-art CDR approaches? RQ3: Are GloVe pre-trained
embeddings a reasonable choice for quantifying similarity
between domains?

A. Experimental Setup

Domain User # Item # Inter. # Sparsity(%)

Comedy 2217 4977 35645 99.67%
Action 2217 2927 20960 99.67%
Adventure 2217 1070 7663 99.67%

TABLE I: Statistics of Movielens Domains
Domain User # Item # Inter. # Sparsity(%)

Romance 11878 1437 79525 99.53%
Historical 11878 465 25733 99.53%
Nonfiction 11878 547 30271 99.53%

TABLE II: Statistics of Books Domains
Domain User # Item # Inter. # Sparsity(%)

Music Instr. 8808 12406 28731 99.97%
Video Games 8808 15152 35100 99.97%
Software 8808 4456 10323 99.97%

TABLE III: Statistics of Amazon product Domains

1) Datasets: We used three real-world datasets to conduct
the experiments. The first dataset, Movielens-25M [19], con-
tains rating information provided by users from the Movielens
website. It contains 5,000,095 ratings, provided by 162,541
users, and 1,093,36 tags across 62,423 movies [19]. We use



Domain Similarities with Domain Embeddings
Movielens Dataset Books-genome Dataset Amazon products Dataset

Domain Combinations Similarity Domain Combinations Similarity Domain Combinations Similarity
Action & Adventure 0.96098 Romance & Historical 0.86616 Music Instr. & Software 0.49735
Action & Comedy 0.93134 Nonfiction & Historical 0.93392 Software & Video Games 0.76430
Comedy & Adventure 0.93051 Romance & Nonfiction 0.81063 Music Instr. & Video Games 0.54254

TABLE IV: Similarities between domain combinations across three different datasets, using the domain embedding method.

Item-Level Domain Similarities
Movielens Dataset Books-genome Dataset Amazon products Dataset

Domain Combinations Similarity Domain Combinations Similarity Domain Combinations Similarity
Action & Adventure 0.35438 Romance & Historical 0.73957 Music Instr. & Software 0.33179
Action & Comedy 0.32491 Nonfiction & Historical 0.78319 Software & Video Games 0.45020
Comedy & Adventure 0.32860 Romance & Nonfiction 0.66449 Music Instr. & Video Games 0.34883

TABLE V: Similarities between the domain combinations across datasets using inter-domain item similarity approach.

movie genres as the domains, and we select Comedy movies,
Action movies and Adventure movies to be the domains from
this dataset. We maintain a 100% user overlap across the three
domains, and regulate the sparsity to be the same for each
domain (see Table I). The sparsity is regulated by removing
ratings, at random, from the domains until the sparsity levels
are equal to the most sparse domain. This allows for a
controlled experiment that measures how domain similarity
affects recommendation performance without any other factors
affecting the results.

The second dataset, Books-genome [20], contains rating
information provided by users from the Good Reads website.
This dataset contains rating information for 350,332 users on
9,374 items, along with 727 tags to represent the items [20].
Similar to the Movielens dataset, we use genres of books
to be the domains, and selected Romance books, Historical
books, and Nonfiction books as the domains for this dataset.
We maintain a 100% user overlap and regulate the sparsity to
be similar across all the domains (see Table II).

The third dataset, Amazon products [21], contains rating
information provided by users on various Amazon products.
This dataset contains a total of 34,686,770 ratings, provided
by 6,643,669 users across 2,441,053 items [13]. We select
the Music Instrument products, Video Game products, and
Software products as the three domains in this dataset. Similar
to the previous datasets, we maintain a 100% user overlap
between the domains, and regulate the sparsity to be equal
across domains (see Table III).

These datasets are considered to be strong datasets for rec-
ommender systems research [13], [20], [22]–[24]. We believe
there can be added complexity and challenges in drawing
clear conclusion from the results if we increase the number of
domains. As a result, we intentionally selected three domains
from each dataset, where each domain contains a significant
amount of data.

2) Baseline Cross-Domain Recommendation Models: We
selected three prominent baselines based on the recent research
in CDR. The first model is CoNet (Collaborative Cross
Networks for Cross-Domain Recommendation) [13]. CoNet
transfers knowledge across domains through cross-connections

between two base neural networks, and learns complex user-
item relationships by using deep transfer learning. The second
baseline CDR model we used is EMCDR (Embedding and
Mapping Approach for Cross Domain Recommendation) [14].
This model uses matrix factorization to learn latent factors for
both domains, and employs a MLP network to map the user
latent features from the source to the target domain. The third
baseline model we used is SSCDR (Semi-Supervised Learning
for Cross-Domain Recommendation) [25]. This model is an
extension to EMCDR, which includes the item information
from the source domain into the training process to learn
a better representation of the data that will be transferred
in the base MLP network. Many recent CDR methods have
compared their algorithm performances against the baselines
we selected for this study [7], [26]–[29]. In addition, majority
of the recent CDR methods are extensions of CoNet and
EMCDR, in that they add more domain specific information
and complex neural architectures to show improvement [30]–
[34]. The baselines we have chosen for this study are relatively
recent, and have proven to be powerful competitors, making
them deserving methods to represent the state-of-the-art for
CDR [11], [35]. We used Recbole-CDR [36], an open source
recommender systems library, for the implementations of these
CDR baselines.

3) Evaluation Metrics: We choose hit ratio (HR), mean
reciprocal rank (MRR), and normalized discounted cumulative
gain (NDCG) to be the ranking metrics in this study. We
evaluate the top 10 items. HR measures to see whether a test
item is present within the top-N recommended items:

HR =
1

|Utest|
∑

u∈Utest

δ(pu ≤ topN) (4)

where Utest is the set of test users, pu is the position of
the test item for the user (u), and δ(·) is the indicator
function. MRR and NDCG are ranking metrics that assign
higher scores to the items that appear higher in the top-N list
of recommendations, and they are defined as follows:

NDCG =
1

|Utest|
∑

u∈Utest

log2

log(pu + 1)
, MRR =

1

|Utest|
∑

u∈Utest

1

pu

(5)



Movielens Dataset
EMCDR

T : Adven. MRR@10 NDCG@10 HR@10
Action 0.0250 0.0361 0.0853
Comedy 0.0291** 0.0408** 0.0921**
Paired t-test p<0.4467 p<0.4595 p<0.3899

T : Action MRR@10 NDCG@10 HR@10
Adventure 0.0168 0.0209 0.0543
Comedy 0.0255** 0.0307** 0.0777**
Paired t-test p<0.1132 p<0.2047 p<0.1081

T : Comedy MRR@10 NDCG@10 HR@10
Action 0.0616** 0.0665** 0.1520**
Adventure 0.0533 0.0604 0.1510
Paired t-test p<0.6079 p<0.4058 p<0.7079

SSCDR
T : Adven. MRR@10 NDCG@10 HR@10
Action 0.0199 0.0289 0.0727
Comedy 0.0296** 0.0406** 0.0940**
Paired t-test p<0.8356 p<0.8096 p<0.6984

T : Action MRR@10 NDCG@10 HR@10
Adventure 0.0068 0.0085 0.0234
Comedy 0.0176** 0.0232** 0.0580**
Paired t-test p<0.6218 p<0.5569 p<0.9267

T : Comedy MRR@10 NDCG@10 HR@10
Action 0.0203** 0.0203** 0.0534**
Adventure 0.0141 0.0172 0.0473
Paired t-test p<0.1547 p<0.1741 p<0.2583

CoNet
T : Adven. MRR@10 NDCG@10 HR@10
Action 0.0391** 0.0531** 0.1105
Comedy 0.0363 0.0522 0.1143**
Paired t-test p<0.1359 p<0.1092 p<0.1469

T : Action MRR@10 NDCG@10 HR@10
Adventure 0.0295** 0.0354 0.0777
Comedy 0.0285 0.0354 0.0795**
Paired t-test p<0.3385 p<0.6454 p<0.7928

T : Comedy MRR@10 NDCG@10 HR@10
Action 0.0662** 0.0670** 0.1428**
Adventure 0.0626 0.0639 0.1382
Paired t-test p<0.2131 p<0.2317 p< 0.2443

Books-Genome Dataset
EMCDR

T : Romance MRR@10 NDCG@10 HR@10
Historical 0.1764 0.2053 0.3515
Nonfiction 0.1815** 0.2123** 0.2661**
Paired t-test p<0.6428 p<0.5658 p<0.6420

T : Nonfict. MRR@10 NDCG@10 HR@10
Historical 0.0474** 0.0658** 0.1296**
Romance 0.0442 0.0629 0.1288
Paired t-test p<0.6055 p<0.5978 p<0.5709

T : Historical MRR@10 NDCG@10 HR@10
Nonfiction 0.0646 0.0860 0.1584
Romance 0.0749** 0.0995** 0.1839**
Paired t-test p<0.7848 p<0.9377 p<0.4131

SSCDR
T : Romance MRR@10 NDCG@10 HR@10
Historical 0.0308 0.0434 0.1005
Nonfiction 0.1341** 0.1713** 0.3309**
Paired t-test p<2e-5* p<2e-8* p<3e-9*
T : Nonfict. MRR@10 NDCG@10 HR@10
Historical 0.0286 0.0435 0.0964
Romance 0.0365** 0.0547** 0.1183**
Paired t-test p<0.4446 p<0.3464 p<0.1971

T : Historical MRR@10 NDCG@10 HR@10
Nonfiction 0.0465 0.0677 0.1410
Romance 0.0890** 0.1178** 0.2146**
Paired t-test p<2e-7* p<4e-8* p<8e-8*

CoNet
T : Romance MRR@10 NDCG@10 HR@10
Historical 0.0323 0.0465 0.1085
Nonfiction 0.1610** 0.1940** 0.3433**
Paired t-test p<1e-5* p<4e-6* p<7e-8*
T : Nonfict. MRR@10 NDCG@10 HR@10
Historical 0.0634** 0.0895** 0.1799**
Romance 0.0469 0.0661 0.1316
Paired t-test p<0.2721 p<0.3880 p<0.5512

T : Historical MRR@10 NDCG@10 HR@10
Nonfiction 0.0948** 0.1202 0.2051
Romance 0.0926 0.1220** 0.2208**
Paired t-test p<0.5227 p<0.4746 p<0.3918

Amazon Products Dataset
EMCDR

T : Software MRR@10 NDCG@10 HR@10
Video Game 0.0032** 0.0044** 0.0084**
Music Instr. 0.0019 0.0024 0.0042
Paired t-test p<0.5089 p<0.7377 p<0.6128

T : Music Ins. MRR@10 NDCG@10 HR@10
Video Game 0.0208 0.0231 0.0381
Software 0.0268** 0.0285** 0.0399**
Paired t-test p<0.4787 p<0.5775 p<0.8759

T : Vid. Game MRR@10 NDCG@10 HR@10
Software 0.0054** 0.0069** 0.0132**
Music Instr. 0.0030 0.0042 0.0083
Paired t-test p<0.8103 p<0.9462 p<0.8283

SSCDR
T : Software MRR@10 NDCG@10 HR@10
Video Game 0.0017 0.0035 0.0098**
Music Instr. 0.0026** 0.0039** 0.0084
Paired t-test p<0.7429 p<0.6647 p<0.4814

T : Music Ins. MRR@10 NDCG@10 HR@10
Video Game 0.0046 0.0062 0.0142
Software 0.0051** 0.0069** 0.0149**
Paired t-test p<0.1756 p<0.1189 p<0.1737

T : Vid. Game MRR@10 NDCG@10 HR@10
Music Instr. 0.0056** 0.0071** 0.0141**
Software 0.0044 0.0058 0.0125
Paired t-test p<0.7198 p<0.6402 p<0.3438

CoNet
T : Software MRR@10 NDCG@10 HR@10
Video Game 0.0025 0.0056 0.0167**
Music Instr. 0.0050** 0.0067** 0.0126
Paired t-test p<0.2287 p<0.2533 p<0.2766

T : Music Ins. MRR@10 NDCG@10 HR@10
Video Game 0.0098 0.0125 0.0205
Software 0.0104** 0.0139** 0.0298***
Paired t-test p<0.7001 p<0.5820 p<0.4429

T : Vid. Game MRR@10 NDCG@10 HR@10
Music Instr. 0.0048 0.0066 0.0145**
Software 0.0052** 0.0066 0.0125
Paired t-test p<0.1533 p<0.1727 p<0.1275

TABLE VI: Cross-domain recommendation results across three datasets for 18 domain combinations. The results for the
Movielens dataset are on the left, the Books-genome dataset in the middle, and the Amazon products dataset on the right.
Results show performance in target domain (T ) when leveraging information from different source domains. For each target
domain, the best result for each algorithm is marked with two stars(**), and the most similar source domain is italicised. Two-
tailed paired t-test shows significance of results in the target domain when using different source domains to transfer information.
P-values less than 0.05 are marked with an asterisk (*) to show that the results in the target domain are significantly better
when using one source domain compared to the other.

B. RQ1: Domain Similarity Results

Our similarity metrics, as shown in Table IV and Table V,
align with our intuitive understanding of domain relationships.
For instance, in the Movielens dataset, Action and Adventure
domains are closely related, while Comedy is equidistant to
both. A study done by Matthews et al. [37] gathered the
topic compositions within each genre and plotted them in a
high dimensional space, with similar genres close together
and dissimilar genres being further apart. We can see that
our similarity metrics mirror the findings of Matthews et al.’s
study [37]. Similarly, in the Books-genome dataset, our metrics
capture the similarity between domains accurately. Nonfiction
and Historical are most similar, in line with Matthews et
al.’s findings [37], which reinforces the effectiveness of our
metrics. In the Amazon products dataset, our metrics reflect
the natural relationships between domains. Software and Video
Games, being closely related digital products, have the highest
similarity, while Music Instruments and Video Games share

some commonality due to music usage in games. Software and
Music Instruments, being fundamentally different, exhibit the
least similarity. The results for the similarity values between
distinct domains, computed using our novel metrics, between
the genres were consistent with the study done by Matthews et
al. [37], and the similarity values for the domain combinations
within the Amazon products dataset aligned with the regular
intuition. As a result, we conclude that our similarity metrics
captures the similarity between two domains effectively.

C. RQ2: Recommendation Performance

We evaluate recommendation performance of 3 baseline
CDR models on 18 different domain combinations (see Table
VI). We conduct a two-tailed paired t-test for each target
domain to see if using a similar source domain produces
statistically significant results compared to using a less similar
source domain.

1) Movielens Dataset Results: In the Adventure domain,
EMCDR and SSCDR outperformed other models when Com-



Domain Similarities with Domain Embeddings (Bert)
Movielens Dataset Books-genome Dataset Amazon products Dataset

Domain Combinations Similarity Domain Combinations Similarity Domain Combinations Similarity
Action & Adventure 0.99763 Romance & Historical 0.97664 Music Instr. & Software 0.92729
Action & Comedy 0.99597 Nonfiction & Historical 0.99051 Software & Video Games 0.97908
Comedy & Adventure 0.99682 Romance & Nonfiction 0.96269 Music Instr. & Video Games 0.92182

TABLE VII: Domain embedding similarity using Bert

Item-Level Domain Similarities (Bert)
Movielens Dataset Books-genome Dataset Amazon products Dataset

Domain Combinations Similarity Domain Combinations Similarity Domain Combinations Similarity
Action & Adventure 0.83287 Romance & Historical 0.95192 Music Instr. & Software 0.80179
Action & Comedy 0.80413 Nonfiction & Historical 0.95590 Software & Video Games 0.82267
Comedy & Adventure 0.80691 Romance & Nonfiction 0.93111 Music Instr. & Video Games 0.81660

TABLE VIII: Inter-domain item similarity using Bert

edy was the source domain, while CoNet performed better with
Action as the source. Surprisingly, as shown by a two-tailed
paired t-test, using Comedy as the source domain showed no
statistically significant difference compared to Action, despite
Adventure’s higher similarity to Action. The same pattern held
for the Action domain. In the Comedy domain, baseline CDR
models performed better when Action was the source domain,
but again, the results were statistically insignificant. Despite
domain similarities, source domains didn’t significantly impact
results (see Tables IV and V). Based on the results from Tables
IV and V, we can see that the similarity between Comedy and
Action versus Comedy and Adventure is relatively equal, but
the similarity does not matter due to insignifican results.

2) Books-genome Dataset Results: In the Romance target
domain, Nonfiction as the source domain led to better results
across all metrics compared to Historical. EMCDR and SS-
CDR showed significant improvements with Nonfiction as the
source, but not CoNet. Surprisingly, despite Romance being
more similar to Historical than Nonfiction, the latter resulted
in significant improvements. This suggests a counter-intuitive
negative correlation between similarity and recommendation
performance. When Nonfiction was the target, EMCDR, and
CoNet performed better with Historical as the source, while
SSCDR did better with Romance as the source. Despite Histor-
ical’s higher similarity to Nonfiction, no significant differences
were observed as per the two-tailed paired t-test. In the
Historical target domain, EMCDR and SSCDR outperformed
others, and CoNet performed well with Romance as the source.
However, only SSCDR showed statistically significant results
when transferring from Romance, despite Romance being
the most similar source to Historical. These inconsistencies
suggest that current state-of-the-art baselines have difficulty
consistently achieving significant results (see Tables IV and V
for similarity details).

3) Amazon products dataset results: In the Software target
domain, EMCDR performed well when using Video Games
as the source, while CoNet and SSCDR performed well with
Music Instruments as the source. Despite Software being
more similar to Video Games, results varied across baseline
models. However, the two-tailed paired t-test found no sta-

tistical significance, regardless of the source domain. When
Music Instruments was the target domain, all baseline CDR
models performed better with Software as the source. Sur-
prisingly, even though Music Instruments are more similar to
Video Games than Software, the results remained statistically
insignificant. In the Video Games target domain, EMCDR
outperformed with Software as the source, SSCDR performed
well with Music Instruments, and CoNet showed no preference
between the two. Yet, the paired t-test revealed no statistical
significance, irrespective of the source domain.

4) Explanation for the Lack of Significant Results for the
State-of-the-Art: Current state-of-the-art CDR methods focus
on transferring user behavior across domains by constructing
user profiles for users in the target domain, based on their
interaction history in the source domain [13], [14], [25]. This
approach relies on the assumption that user preferences will
remain the same across different domains, no matter how
similar or dissimilar the domains are. As a result, each domain
is usually represented based on the interactions of users and
items, rather than the shared characteristics of items across
different domains. For example, they do not consider how
items from one domain are connected to items from another
domain, and how that can improve the creation of user profiles
and recommendation results in a target domain. Based on the
results in Table VI, we believe the insignificant results are a
result of current CDR methods not effectively leveraging sim-
ilarities between domains, by not exploiting other information
outside of interaction patterns. The insignificant improvement
when using more similar source domains does not necessarily
imply the ineffectiveness of our similarity metrics, in fact, it
can act as a sign that the current algorithms are not effectively
leveraging similarities between domains. We argue that by
leveraging all available similarities between domains (explicit
and implicit), the recommendation performance in the target
domain has a chance to improve significantly.

D. RQ3: GloVe Embeddings for Similarity Computation

We chose to use GloVe embeddings for word representation
in this study. There have been recent advances in NLP that
use transformer based architectures to create embeddings



for text, for example, Bidirectional Encoder Representations
from Transformers (BERT) has shown to be very effective
in representing text as embeddings [38]. However, BERT is
known for representing text sequences that contain multiple
words as a single embedding, and it has proved to be very
powerful [38]. In order to ensure a comprehensive exploration
of options for word embeddings, we conducted additional
experiments that use BERT embeddings for our similarity
metrics (Table VII and Table VIII). The results showed the
similarity values between domain combinations is less distinct,
and compared to GloVe, the similarity scores were much
higher between domains. Given that BERT embeddings consist
of high dimensions (786), and the embeddings are normalized,
the results are not surprising [38]. Considering that GloVe
was provided a clear differentiation in similarity values across
domain combinations, along with the computational efficiency,
we used GloVe for our study. However, we encourage explo-
ration of other embedding methods for future work.

V. CONCLUSION

We presented two novel similarity metrics to quantify
similarity systematically between two domains in the context
of cross-domain recommendation. We demonstrated that our
metrics possess construct validity, and showed they can effec-
tively produce similarity values that match with an existing
study. We conducted an extensive evaluation across different
datasets to see if the current state-of-the-art algorithms made
significantly better recommendations in the target domain
with more similar source domains compared to less similar
source domains. From the experiments, we found that the
CDR models do not perform significantly better when using
more similar source domains compared to less similar source
domains, and no matter how similarity between domains is
measured, the results of the recommendation performance do
not correlate with the similarity values.
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